| 2 | x | 1 | ||||
Wiedząc, że f(x) = | − | , rozwiązać nierówność f( | )>= x−2 | |||
| 1+x | 1+x | x |
| 2 | x | |||
f(x) = | − | |||
| 1 + x | 1 + x |
| 1 | 2 | 1x | 2 − 1x | |||||
f( | ) = | − | = | = | ||||
| x | 1 + 1x | 1 + 1x | 1 + 1x |
| 2x − 1x | 2x − 1 | x | 2x − 1 | |||||
= | = | * | = | |||||
| x + 1x | x | x + 1 | x + 1 |
| 2x − 1 | |
≥ x − 2 ; x ≠ − 1 | |
| x + 1 |
| 2x − 1 | (x −2)*( x + 1) | ||
− | ≥ 0 | ||
| x + 1 | x + 1 |
| 2x − 1 | x2 + x −2x − 2 | ||
− | ≥ 0 | ||
| x + 1 | x + 1 |
| 2x − 1 | x2 − x − 2 | ||
− | ≥ 0 | ||
| x + 1 | x + 1 |
| 2x − 1 − x2 + x + 2 | |
≥ 0 | |
| x + 1 |
| − x2 + 3x + 1 | |
≥ 0 | |
| x + 1 |
| − 3 − √13 | 3 + √13 | |||
x1 = | = | ≈ 3,3 | ||
| −2 | 2 |
| − 3 + √13 | 3 − √13 | |||
x2 = | = | ≈ − 0,3 | ||
| −2 | 2 |
| 3 − √13 | 3 + √13 | |||
Odp. x ∊ ( − ∞; −1) ∪ < | ; | > | ||
| 2 | 2 |
| 2 | x | |||
f(x) = | − | |||
| 1 + x | 1 + x |
| 1 | 2 | 1x | 2 − 1x | |||||
f( | ) = | − | = | = | ||||
| x | 1 + 1x | 1 + 1x | 1 + 1x |
| 2x − 1x | 2x − 1 | x | 2x − 1 | |||||
= | = | * | = | |||||
| x + 1x | x | x + 1 | x + 1 |
| 2x − 1 | |
≥ x − 2 ; x ≠ − 1 | |
| x + 1 |
| 2x − 1 | (x −2)*( x + 1) | ||
− | ≥ 0 | ||
| x + 1 | x + 1 |
| 2x − 1 | x2 + x −2x − 2 | ||
− | ≥ 0 | ||
| x + 1 | x + 1 |
| 2x − 1 | x2 − x − 2 | ||
− | ≥ 0 | ||
| x + 1 | x + 1 |
| 2x − 1 − x2 + x + 2 | |
≥ 0 | |
| x + 1 |
| − x2 + 3x + 1 | |
≥ 0 | |
| x + 1 |
| − 3 − √13 | 3 + √13 | |||
x1 = | = | ≈ 3,3 | ||
| −2 | 2 |
| − 3 + √13 | 3 − √13 | |||
x2 = | = | ≈ − 0,3 | ||
| −2 | 2 |
| 3 − √13 | 3 + √13 | |||
Odp. x ∊ ( − ∞; −1) ∪ < | ; | > | ||
| 2 | 2 |
| 2−x | ||
f(x)= | ||
| 1+x |
| 1 | ||
f( | )≥x−2 | |
| x |
| 2−1x | |
≥x−2 | |
| 1+1x |
| 2−xx | |
≥x−2 | |
| x+1x |
| 2−x | |
≥x−2 | |
| 1+x |
| 2−x | |
−x+2≥0 | |
| 1+x |
| 2−x−x2−x+2x+2 | |
≥0 | |
| x+1 |
| 4−x2 | |
≥0 | |
| x+1 |
| 2 | x | |||
f(x) = | − | |||
| 1 + x | 1 + x |
| 1 | 2 | 1x | 2 − 1x | |||||
f( | ) = | − | = | = | ||||
| x | 1 + 1x | 1 + 1x | 1 + 1x |
| 2x − 1x | 2x − 1 | x | 2x − 1 | |||||
= | = | * | = | |||||
| x + 1x | x | x + 1 | x + 1 |
| 2x − 1 | |
≥ x − 2 ; x ≠ − 1 i x ≠ 0 | |
| x + 1 |
| 2x − 1 | (x −2)*( x + 1) | ||
− | ≥ 0 | ||
| x + 1 | x + 1 |
| 2x − 1 | x2 + x −2x − 2 | ||
− | ≥ 0 | ||
| x + 1 | x + 1 |
| 2x − 1 | x2 − x − 2 | ||
− | ≥ 0 | ||
| x + 1 | x + 1 |
| 2x − 1 − x2 + x + 2 | |
≥ 0 | |
| x + 1 |
| − x2 + 3x + 1 | |
≥ 0 | |
| x + 1 |
| − 3 − √13 | 3 + √13 | |||
x1 = | = | ≈ 3,3 | ||
| −2 | 2 |
| − 3 + √13 | 3 − √13 | |||
x2 = | = | ≈ − 0,3 | ||
| −2 | 2 |
| 3 − √13 | 3 + √13 | |||
Odp. x ∊ ( − ∞; −1) ∪ < | ; | > \ { 0 } | ||
| 2 | 2 |