Arkusy
xyz: | | √2 | | π | |
arctg(3+2√2)−arctg( |
| )= |
| |
| | 2 | | 4 | |
arctg(3+2
√2)=α /tg()
tgα=3+2
√2
I co z tym dalej zrobić?
4 lis 22:37
xyz: Jakaś podpowiedź
4 lis 22:50
xyz: Istnieje coś takiego jak:
arctg(α+β)=?
4 lis 22:57
4 lis 23:09
xyz: Niby fajnie tylko ani arctg(a+b) nie ma ani arctgx+arctgy.
4 lis 23:19
Mila:
Zapisz tak
| | π | | π | |
arctg(3+2√2)=α i α∊(− |
| , |
| ) |
| | 2 | | 2 | |
tg(arctg(3+2
√2))=tgα ⇔tgα=(3+2
√2)
| | √2 | | π | | π | |
arctg |
| =β i β∊(− |
| , |
| ) |
| | 2 | | 2 | | 2 | |
| | √2 | | √2 | |
tg(arctg |
| )=tgβ ⇔tgβ= |
| |
| | 2 | | 2 | |
| | √2 | |
arctg(3+2√2)−arctg |
| =δ |
| | 2 | |
tg(α+β)=tgδ
| | tgα−tgβ | |
tg(α+β)= |
| podstaw i oblicz |
| | 1+tgα*tgβ | |
5 lis 00:45
Mila: ?
5 lis 22:03