matematykaszkolna.pl
Układy równań liniowych Studentka: Proszę o sprawdzenie dwóch krótkich przykładów zadania dotyczą równań liniowych na macierzach Omówic ilosc rozwiazan i rozwiazac nastepujace układy równan: a) 2x+y−z−t=0 x+y−2z−t=2 −x−y−z+t=−1 więc macierz A 2 1 −1 −1 A=1 1 −2 −1 −1 −1 −1 1 0 b=2 −1 Z tw. Kroneckera−Capellego Macierz A m3=−3 czyli r(A)=3 Macierz U m3=6 czyli r(U)= 3 r(A)=r(U)<4 Układ jest nieoznaczony czyli ma nieskończenie rozwiązań b) x+3y+z+2t=3 4x+3y+z+t=6 5x+y−z−t=6 2x+y−z−t=2 x−3y−z−t=1 Macierz A i b to proste wyznaczyć wiec skróce r(a) moze być mniejsze lub równe 4 r(U)=5 Więc układ jest sprzeczny Czy dobrze rozwiazałam?
4 lis 21:20
Studentka: Może ktoś pomóc?
4 lis 21:35
Studentka: proszę o pomoc... Jutro mam kolokwium..
5 lis 07:08
Studentka: ?
5 lis 09:20
Studentka: ?
5 lis 11:31
Studentka:
5 lis 13:30
Studentka: ?
5 lis 21:12