| 4 | 5 | 16 | π | |||||
arc sin( | ) + arc sin( | ) + arc sin( | ) = | |||||
| 5 | 13 | 65 | 2 |
| 4 | 5 | 16 | π | |||||
(1) arcsin | +arcsin | +arcsin( | )= | |||||
| 5 | 13 | 65 | 2 |
| 4 | π | π | ||||
arcsin | =α i α∊<− | , | > | |||
| 5 | 2 | 2 |
| 5 | π | π | ||||
arcsin | =β i β∊<− | , | > | |||
| 13 | 2 | 2 |
| 16 | π | π | ||||
arcsin( | )=γ i γ∊<− | , | > | |||
| 65 | 2 | 2 |
| π | ||
(2) α+β+γ= | ||
| 2 |
| 4 | 5 | |||
arcsin | +arcsin | =δ /sin | ||
| 5 | 13 |
| 4 | π | π | 4 | 3 | ||||||
arcsin | =α i α∊<− | , | >⇔sinα= | icosα>0⇔cosα=p{1−(4/5)2]= | ||||||
| 5 | 2 | 2 | 5 | 5 |
| 5 | π | π | 5 | |||||
arcsin | =β i β∊<− | , | >⇔sinβ= | i cosβ>0⇔ | ||||
| 13 | 2 | 2 | 13 |
| 12 | ||
cosβ=√1−(5/13)2= | ||
| 13 |
| 4 | 12 | 3 | 5 | 63 | ||||||
sin(α+β)= | * | + | * | = | ⇔ | |||||
| 5 | 13 | 5 | 13 | 65 |
| 63 | ||
α+β=arcsin | ||
| 65 |
| 63 | 16 | π | ||||
arcsin | +arcsin | = | ? | |||
| 65 | 65 | 2 |
| 63 | ||
arcsin | =δ dopisz założenia jak wyżej | |
| 65 |
| 63 | 16 | |||
sinδ= | i cosδ=√1−(63/65)2=√1−3969/4225= | |||
| 65 | 65 |
| 16 | π | π | 16 | 63 | ||||||
arcsin( | )=γ i γ∊<− | , | >⇔sinγ= | i cosγ= | ||||||
| 65 | 2 | 2 | 65 | 65 |
| 63 | 63 | 16 | 16 | 3969+256 | ||||||
sin(δ+γ)= | * | + | * | = | =1⇔ | |||||
| 65 | 65 | 65 | 65 | 4225 |
| π | 4 | 5 | 16 | π | ||||||
δ+γ= | ⇔ arcsin | +arcsin | +arcsin( | )= | ||||||
| 2 | 5 | 13 | 65 | 2 |