niezależne
wektory: Proste zadanko
Jeżeli mam dane wektory zawierające jakiś parametr a, to jak sprawdzić dla jakich wartości a te
wektory są niezależne?
Na przykład jakieś: x1=[a, 1], x2=[0, a], x3=[0, −1]? Najchętniej zrobiłbym, że żeby być
niezależnymi to muszą spełniać x1+x2+x3=wektor__zerowy i stwierdził, że a=0, ale nie wiem
czy tak to działa i jakieś takie za proste to się wydaje.
24 paź 23:21
PW: Definicja układu liniowo niezależnych wektorów aż taka prosta nie jest, sprawdź.
24 paź 23:47
MQ: To pewno już za późno, ale...
Wektory są liniowo zależne, gdy istnieje ich kombinacja liniowa taka, że jest równa wektorowi
zerowemu.
Sprowadza się to do tego, że istnieją takie liczby (skalary) α1, α2, α3, że:
α1x1+α2x2+α3x3=0
Generalnie w twoim pomyśle brakowało tych liczb: α1, α2, α3.
25 paź 10:34