| n−3 | ||
lim ( | )3n | |
| n+1 |
dzieki
| n−3 | n+1−4 | n+1 | 4 | 4 | ||||||
Zapisz inaczej | = | = | − | =1− | ||||||
| n+1 | n+1 | n+1 | n+1 | n+1 |
| 4 | ||
tak tyle to sam potrafie zrobic tylko nie wiem co dalej jak juz mam (1− | )3n | |
| n+1 |
| 1 | 1 | |||
podobno trzeba skorzystac ze wzoru lim(1− | )n = | nie wiem jak z 3n zrobic | ||
| n | e |
| 4 | ||
(1− | )3n= | |
| n+1 |
| 4 | ||
[(1− | )n+1]3n/(n+1)→e−4*3 | |
| n+1 |
| 3n | ||
nie czaje w potedze za nawiasem kwadratowym jest cos takiego | tak? | |
| n+1 |
dd pomocy
| n+2 | ||
np jak mam przyklad inny lim ( | )2n−1 to robie tak | |
| n−3 |
| n−3+5 | 5 | |||
= lim ( | ) 2n−1 = lim [(1+ | )n−3] 2n−1 / n−3 } = i co | ||
| n−3 | n−3 |
| a | ||
(1+ | )coś→ea | |
| coś |
| n + 2 | n −3 | 1 +2n | ||||
an = ( | )2n − 1 = ( | ) * ( | }2n | |||
| n − 3 | n + 2 | 1 − 3n |
| n − 3 | ( 1 + 2n)n | |||
= ( | )* [ | ]2 | ||
| n + 2 | ( 1 − 3n)n |
| e2 | ||
lim an = 1*[ | ]2 = [ e2 − (−3)]2 = [ e5}2 = e10 | |
| e−3 |
| n + 2 | n −3 | 1 +2n | ||||
an = ( | )2n − 1 = ( | ) * ( | }2n | |||
| n − 3 | n + 2 | 1 − 3n |
| n − 3 | ( 1 + 2n)n | |||
= ( | )* [ | ]2 | ||
| n + 2 | ( 1 − 3n)n |
| e2 | ||
lim an = 1*[ | ]2 = [ e2 − (−3)]2 = [ e5}2 = e10 | |
| e−3 |
| n + 2 | n −3 | 1 +2n | ||||
an = ( | )2n − 1 = ( | ) * ( | }2n | |||
| n − 3 | n + 2 | 1 − 3n |
| n − 3 | ( 1 + 2n)n | |||
= ( | )* [ | ]2 | ||
| n + 2 | ( 1 − 3n)n |
| e2 | ||
lim an = 1*[ | ]2 = [ e2 − (−3)]2 = [ e5}2 = e10 | |
| e−3 |
| n − 3 | ( 1 − 3n)n | |||
an = ( | )3n =[ | ]3 | ||
| n + 1 | ( 1 + 1n)n |
| e−3 | ||
lim an = [ | ]3 = [ e−4]3 = e−12 | |
| e |
okej juz ogarniam skad to sie bierze tylko janek powidz mi jeszcze jedno dlaczego z U{ n−3
}{ n+2 } w pierwszym przykladzie wyszlo CI 1 ?
| n−3 | ||
z | ||
| n+2 |
| n−4 | ||
lim ( | ) −n+3 | |
| n |
| 4 | 4 | 4 | ||||
lim ( 1− | ) −n+3 = lim ( 1− | ) −n * ( 1− | )3 = | |||
| n | n | n |
| 4 | 4 | e | ||||
lim [( 1− | )n] −1 =( | ) −1 = | ||||
| n | e | 4 |
| n − 3 | 1 − 3n | 1 − 0 | ||||
lim | = lim | = | = 1 | |||
| n + 2 | 1 + 2n | 1 + 0 |
| 1 | 1 | |||
to ten wzor lim ( 1− | )n = | tutaj nie bedzie ? | ||
| n | e |
| a | ||
lim ( 1 + | )n = ea | |
| n |
| 1 | 1 | |||
lim ( 1 − | )n = e−1 = | |||
| n | e |
| a | ||
lim ( 1 − | )n = e−a | |
| n |