| 1 | 1 | 7 | ||||
(1 + | + | )(1 + q + q2) = 21 * | ||||
| q | q2 | 12 |
| 1 | 1 | 1 | 7 | |||||
1 + q + q2 + | + 1 + q + | + | + 1 = 7 * | |||||
| q | q2 | q | 4 |
| 1 | 2 | 49 | ||||
q2 + 2q + 3 + | + | = | / *q2 | |||
| q2 | q | 3 |
| 49 | ||
q4 + 2q3 + 3q2 + 1 + 2q = | q2 | |
| 4 |
| 37 | ||
q4 + 2q3 − | q2 + 2q + 1 = 0 | |
| 4 |
| 37 | ||
W(1) = 1 + 2 − | + 2 + 1 | |
| 4 |
| 17 | ||
W(1) = − | ≠ 0 | |
| 3 |
| 37 | ||
W(−1) = 1 − 2 − | −2 + 1 | |
| 4 |
| 45 | ||
W(−1) = − | ≠ 0 | |
| 4 |
| 37 | ||
Aha no tak, | wszytko psuje, chyba pozostaje sposób Jakuba, dzięki | |
| 4 |
| 1 | 1 | 37 | ||||
q2 + | + 2(q + | ) − | = 0 | |||
| q2 | q | 4 |
| 1 | 1 | 45 | ||||
(q + | )2 + 2(q + | ) − | = 0 | |||
| q | q | 4 |
| 1 | 1 | 49 | ||||
(q + | )2 + 2(q + | ) + 1 − | = 0 | |||
| q | q | 4 |
| 1 | 7 | |||
(q + | ) + 1)2 − ( | )2 = 0 | ||
| q | 2 |
| 1 | 7 | 1 | 7 | |||||
(q + | + 1 + | )(q + | + 1 − | ) = 0 | ||||
| q | 2 | q | 2 |
| 1 | 9 | 1 | 5 | |||||
(q + | + | )(q + | − | ) = 0 | ||||
| q | 2 | q | 2 |
| 9 | 5 | |||
(q2 + | q + 1)(q2 − | q + 1) = 0 | ||
| 2 | 2 |