Proooszę
| x | ||
Sn=sinx+sin(2x)+sin(3x)+···+sin(nx) /*(−2sin( | ) | |
| 2 |
| x | ||
−2sin( | ) | |
| 2 |
| x | x | x | x | |||||
Sn=−2sin( | )*sinx−2sin( | )sin(2x)−2sin( | )sin(3x)...−2sin | )sin(nx) | ||||
| 2 | 2 | 2 | 2 |
| A+B | A−B | |||
cosA−cosB=−2sin | *sin | do kolejnych składników sumy | ||
| 2 | 2 |
| x | ||
1)−2sin( | )*sinx=.. | |
| 2 |
| A+B | A−B | x | 3 | 1 | |||||
=x i | = | ⇔A= | x, B= | x | |||||
| 2 | 2 | 2 | 2 | 2 |
| x | 3 | 1 | ||||
−2sin( | )*sinx=cos( | x−cos | x | |||
| 2 | 2 | 2 |
| x | ||
2) −2sin( | )sin(2x)=.. | |
| 2 |
| A−B | x | A+B | 5 | 3 | |||||
= | i | =2x ⇔A= | x, B= | x | |||||
| 2 | 2 | 2 | 2 | 2 |
| x | 5 | 3 | ||||
−2sin( | )sin(2x)=cos | x−cos | x | |||
| 2 | 2 | 2 |
| x | ||
n) −2sin | )sin(nx)=.. | |
| 2 |
| A−B | x | A+B | 2n+1 | 2n−1 | |||||
= | i | =nx ⇔ A= | x, B= | x⇔ | |||||
| 2 | 2 | 2 | 2 | 2 |
| x | 2n+1 | 2n−1 | ||||
−2sin | )sin(nx)=cos | x−cos | x | |||
| 2 | 2 | 2 |
| x | ||
−2sin( | ) Sn= | |
| 2 |
| 3 | 1 | 5 | 3 | 2n+1 | 2n−1 | |||||||
=cos( | x−cos | x+cos | x−cos | x+...+cos | x−cos | x⇔ | ||||||
| 2 | 2 | 2 | 2 | 2 | 2 |
| x | 2n+1 | 1 | ||||
−2sin( | ) Sn=cos | x−cos | x⇔ | |||
| 2 | 2 | 2 |
| x | (n+1)x | nx | ||||
−2sin( | ) Sn=−2sin | *sin | ⇔ | |||
| 2 | 2 | 2 |
| |||||||||||||||||
Sn= | |||||||||||||||||
|
| 1 | ||
Sn = ∑k=1..n sin(kx) = | ∑k=1..n (eikx − e−ikx) | |
| 2i |
| 1 | 1 | un−1 | u−n−1 | |||||
Sn = | ∑k=1..n (uk − u−k) = | (u* | −u−1 | ) | ||||
| 2i | 2i | u−1 | u−1−1 |
| 1 | un+1−u | u−(n+1)−u−1 | ||||
= | ( | − | ) | |||
| 2i | u−1 | u−1−1 |
| 1 | (un+1−u)(u−1−1) − (u−(n+1)−u−1)(u−1) | |||
= | * | |||
| 2i | (u−1)(u−1−1) |
| 1 | un−un+1−1+u − [u−n−u−(n+1)−1+u−1] | |||
= | * | |||
| 2i | 2 − (u+u−1) |
| 1 | (un−u−n) − (un+1−u−(n+1)) + (u−u−1) | |||
= | * | |||
| 2i | 2 − (u+u−1) |
| sin(nx) − sin((n+1)x) + sin(x) | ||
= | ||
| 2 − 2cos(x) |
| ei(n+1)x − eix | cos(n+1)x + isin(n+1)x − cosx − isinx | |||
z = | = | |||
| eix−1 | cosx−1+isinx |
| (cos(n+1)x + isin(n+1)x − cosx − isinx)(cosx−1 − isinx) | ||
= | ||
| |cosx−1 + isinx|2 |
| (sin(n+1)x − sinx)*(cosx−1) − (cos(n+1)x − cosx)*sinx | ||
Im[z] = | ||
| (cosx−1)2 + sin2x |
| cosx*sin(n+1)x − sinx*cos(n+1)x − sin(n+1)x + sinx | ||
= | ||
| 2 − 2cosx |
| sin(nx) − sin(n+1)x + sinx | ||
= | ||
| 2 − 2cosx |
Dla wprawy oblicz sumę:
Sn=cosx+cos(2x)+cos(3x)+...............+cos(nx)
| sin2n+12x | 1 | |||
Wyszło mi że Sn= | − | |||
| sinx2 | 2 |
| x | ||
Tak, ale w mianowniku 2sin | , pewnie zapomniałaś. | |
| 2 |