lim(n→∞) 1+2+3+...+nn+2 − n2
| 0,5n*( n + 1) | n | n*( n + 1) − n*( n +2) | ||||
an = | − | = | = | |||
| n + 2 | 2 | 2*( n + 2) |
| n2 + n − n2 −2n | − n | −1 | ||||
= | = | = | ||||
| 2n + 4 | 2n + 4 | 2 + 4n |
| 1 | ||
lim an = − | ||
| 2 |
| 0,5n*( n + 1) | n | n*( n + 1) − n*( n +2) | ||||
an = | − | = | = | |||
| n + 2 | 2 | 2*( n + 2) |
| n2 + n − n2 −2n | − n | −1 | ||||
= | = | = | ||||
| 2n + 4 | 2n + 4 | 2 + 4n |
| 1 | ||
lim an = − | ||
| 2 |