| 3x−7 | 3x+1,5−8,5 | 1,5(2x+1)−8,5 | ||||
f(x)= | = | = | = | |||
| 2x+1 | 2x+1 | 2x+1 |
| 8,5 | −4,25 | −174 | ||||
= 1,5 − | = 1,5+ | = 32+ | ||||
| 2(x+12) | x+0,5 | x+12 |
| −2x+3 | −2x+3 | −23x+1 | ||||
f(x)= | = | = | = | |||
| 3x+2 | 3(x+23) | x+23 |
| −23(x−32) | −23(x+23−23−32) | |||
= | = | = | ||
| x+23 | x+23 |
| −23(x+23)+49+1 | 139 | |||
= | = −23+ | . ... | ||
| x+23 | x+23 |
1/ wystarczy wykonać dzielenie : (3x−7) : (2x+1) = 1,5
−3x −1,5
−−−−−−−
= −8,5
| 8,5 | 17 | |||
f(x)= 1,5 − | = 1,5 − | |||
| 2x+1 | 4(x+0,5) |