z góry dziękuję
| ∂F∂x | ||
y'(x) = − | = 0 ⇔ ∂F∂x = 0 ∂F∂x = 5x4 − 4y2 | |
| ∂F∂y |
| ⎧ | x5 + y4 − 4xy2 = 0 | ||
| ⎨ | 5x4 − 4y2 = 0 | ||
| ⎩ | 4y3 − 8xy ≠ 0 |
| 5 | ||
y2 = | x4 | |
| 4 |
| 25 | ||
x5 + | x8 − 5x5 = 0 | |
| 16 |
| 25 | ||
x5( | x3 − 4) = 0 | |
| 16 |
| 25 | 4 | |||
x = 0 lub | x3 = 4 → x = | |||
| 16 | 52/3 |
| √5 | 4 | 8 | 8 | |||||
y = 0 y = ± | ( | )2 = ± | = ± | |||||
| 2 | 52/3 | 54/3 − 1/2 | 55/6 |
| 4 | 8 | |||
Rozwiązania (x,y) = ( | , ± | ) warunek ten spełniają. | ||
| 52/3 | 55/6 |
| 20x3 | 5x3 | ||||||||||
y''(x) = − | = − | = | ||||||||||
| 4y3 − 8xy | y(x−y2) |
| 4 | 53 | |||||||||||||||||||||
y''( | ) = ± | = ∓α, α > 0 | ||||||||||||||||||||
| 52/3 |
|
| 8 | ||
Dla y = | mamy y''(x) < 0 → maksimum lokalne | |
| 55/6 |
| 8 | ||
Dla y = − | mamy y''(x) > 0 → minimum lokalne. | |
| 55/6 |
| 5x3 | ||
y''(x) = ... = | ||
| y(2x−y2) |