| 1 | 1 | |||
f(g(x)) = f(x3) = | = | |||
| x3−1 | (x−1)(x2+x+1) |
| 1 | ||
g(f(x)) = g(1x−1) = (1x−1)3 = | ||
| (x−1)3 |
| 1 | 1 | ||
≥ | |||
| (x−1)(x2+x+1) | (x−1)3 |
| 1 | 1 | ||
− | ≥ 0 | ||
| (x−1)(x2+x+1) | (x−1)(x2−2x+1) |
| x2−2x+1 − (x2+x+1) | |
≥ 0 | |
| (x−1)3(x2+x+1) |
| x2−2x+1 − x2−x−1 | |
≥ 0 | |
| (x−1)3(x2+x+1) |
| −3x | |
≥ 0 /*(x2+x+1) | |
| (x−1)3(x2+x+1) |
| −3x | |
≥ 0 /: (−3) | |
| (x−1)3 |
| x | |
≤ 0 | |
| (x−1)3 |
| 1 | 1 | |||
f(x3} ≥ g(1x−1) i x≠1 ⇔ | ≥ | i x≠1 (*) ⇒ | ||
| x3−1 | (x−1)3 |
| 1 | 1 | |||
⇒ | ≥ | / * (x−1)4(x3+x+1)> 0 ∀x≠1 ⇔ | ||
| (x−1)(x2+x+1 | (x−1)3 |