Rozwiąż równanie
atomek: 2 sin2 (2x+π/2) − 1= 0
4 paź 15:51
Basia:
(
√2*sin(2x+π/2)−1)(
√2sin(2x+π/2)+1) = 0
√2*sin(2x+π/2)−1 = 0 lub
√2*sin(2x+π/2)+1=0
√2*sin(2x+π/2)= 1 lub
√2*sin(2x+π/2)= −1
| | 1 | | √2 | | 1 | | √2 | |
sin(2x+π/2) = |
| = |
| lub sin(2x+π/2) = − |
| =− |
| |
| | √2 | | 2 | | √2 | | 2 | |
2x+
π2 =
π4+2kπ
lub
2x+
π2 =
3π4+2kπ
lub
2x+
π2 =
5π4+2kπ
lub
2x+
π2 =
7π4+2kπ
dokończ
4 paź 16:01
Saizou : można też tak:
| | π | | π | | π | |
2sin2x+ |
| −(sin2(2x+ |
| )+cos2(2x+ |
| ))=0 |
| | 2 | | 2 | | 2 | |
| | π | | π | |
sin2(2x+ |
| )−cos2(2x+ |
| )=0 |
| | 2 | | 2 | |
| | π | | π | |
cos2(2x+ |
| )−sin2(2x+ |
| )=0 |
| | 2 | | 2 | |
cos
2(4x+π)=0
8x+2π=π+2kπ
8x=−π+2kπ
4 paź 16:14
atomek: Dziękuje bardzo
4 paź 17:45