d2 = 2h2(1−cos120o) tw cosinusów
(a√2)2 = 2h2(1+12)
| 2 | ||
h2 = | a2 | |
| 3 |
| hs*a | ||
h*l = a*hs ⇒ l = | ||
| h |
| a2 | ||
hs2 = l2 − | wstawiamy za l | |
| 4 |
| hs2*a2 | a2 | |||
hs2 = | − | wstawiamy za h2 | ||
| h2 | 4 |
| hs2*a2*3 | a2 | |||
hs2 = | − | |||
| 2a2 | 4 |
| |||||||
= cosβ | |||||||
| hs |
| |||||||
= cosβ | |||||||
| hs |
α=120o
Oblicz miarę kąta dwuściennego między:
a) ścianą boczną i podstawą
b) dwiema przeciwległymi ścianami bocznymi.
∡OEB=60o
|AC|=a√2 − przekątna kwadratu
| 1 | ||
|OB|= | a√2 | |
| 2 |
| OB | ||
w ΔEOB: sin60= | ||
| h |
| √3 | 0,5a√2 | ||
= | ⇔ | ||
| 2 | h |
| a√6 | ||
h= | ||
| 3 |
| OE | ||
ctg60= | ||
| OB |
| √3 | OE | ||
= | |||
| 3 | 0,5a√2 |
| √3 | ||
OE= | *a*0,5√2 | |
| 3 |
| a√6 | ||
OE= | ||
| 6 |
| a√6 | ||
x2+h2=a2⇔x2+( | )2=a2 | |
| 3 |
| 6 | ||
x2=a2−a2* | ||
| 9 |
| a√3 | ||
x= | ||
| 3 |
| h | a√6 | a√3 | ||||
tgδ= | = | : | ||||
| x | 3 | 3 |
| SF | ||
tgδ= | =√2⇔SF=U{a√2{2} | |
| 0,5a |
| OF | ||
W ΔSFO: cosβ= | ||
| SF |
| 0,5a | √2 | |||
cosβ= | = | |||
| 0,5a√2 | 2 |