matematykaszkolna.pl
Równania trygonometria - co z końcówką? Mikrus: Witam, mam problem z ukończeniem zadania 'wyznacz wszystkie rozwiązania równania 2sin2x+3cosx=0 należące do przedziału <0.2π)." (niby proste ale nie mam rozszerzenia w szkole i uczę się sama i nie ma kto mi wytłumaczyć) rozpisałam to tak: 2(1−cos2x) + 3cosx = 0 −2cos2x + 3cosx + 2 = 0 (z jedynki trygonometrycznej) (zastąpiłam cosx na t) cosx=t −2t2 + 3t +2 = 0 (delta) Δ = 32 − 4 x (−2) x 2 = 9 + 16 =25 x1= − 12 x2= 2 (sprzeczne) cosx = − 12 x = − π3 i tu pojawia się problem, nei wiem co dalej, wydaje mi się, że powinnam zastosować jakiś wzór typu x = π2 + kπ ale nie wiem czym jest k ani co w ogóle ten wzór oznacza (m.zerowe?) Bardzo prosiłabym o pomoc i wytłumaczenie tego w miare możliwości.
30 wrz 23:21
Basia: rysunek
 1 
cos(−π3) = +

 2 
 1  
cosx = −

⇔ x = π−π3 = 3 lub x = π+π3 =

 2 3 
oczywiście w przedziale <0; 2π)
30 wrz 23:32
Mikrus: Ok, wkradł się błąd, dziękuję za poprawienie. Więc tylko tyle, że podstawiam i wyliczam, dzięki wielkie Basia za odpowiedź!
30 wrz 23:43