| n3x2 | ||
fn(x)= | x∊[0,∞) | |
| n3x+1 |
| x2 | |||||||||||
limn→∞fn(x)=limn→∞ | =x=f(x). Stąd fn→f . | ||||||||||
|
| n3x2 | n3x2−n3x2−1 | −x | ||||
gn(x)=fn(x)−f(x)= | −x= | = | ||||
| n3x+1 | n3x+1 | n3x+1 |
| −n3x−1+x*n3 | −1 | |||
gn'(x)= | = | |||
| (n3x+1)2 | (n3x+1)2 |
| −1 | ||
Zauważmy ,że | >0 ⇔ x∊(0,∞) rosnąca na przydziale x∊(0,∞)! | |
| (n3x+1)2 |
!




?

