pigor: ... , rozwiązań szukam wśród liczb
x∊R+, więc np.
tak :
x3+2logx = 10x1−logx ⇔ log(x
3+2logx) = log(10x
1−logx} ⇔
⇔ (3+2logx)logx = log10+logx
1−logx ⇔ 3logx+2log
2x = 1+(1−logx)logx ⇔
⇔ 3logx+2log
2x = 1+logx−log
2x ⇔
3log2x+2logx−1= 0 ⇔
⇔ 3log
2x+3logx−logx−1= 0 ⇔ 3logx (logx+1)−1 (logx+1)= 0 ⇔
⇔ (logx+1) (3logx−1)= 0 ⇔ logx+1=0 lub 3logx−1= 0 ⇔
⇔ logx=−1 lub logx=
13 ⇔ x=10
−1 lub x=10
13 ⇔
x∊{110,3√10}