| 1 | 3 | |||
limx→1[ | − | ]= | ||
| 1−x | (1−x)*(1+x+x2) |
| 1+x+x2−3 | ||
=limx→1 | = | |
| (1−x)*(1+x+x2) |
| x2+x−2 | ||
=limx→1 | = | |
| (1−x)*(1+x+x2) |
| (x−1)*(x+2) | ||
=limx→1 | = | |
| (1−x)*(1+x+x2) |
| (−1)*(x+2) | −(1+2) | |||
=limx→1 | = | =−1 | ||
| (1+x+x2) | 1+1+1 |
Jeszcze jeden problem :
| 1 | ||
limx→1+ | ||
| 1−x |
| 1 | 1 | |||
limx→1+ | =[ | ]=−∞ | ||
| 1−x | 0− |
| 1 | 1 | |||
limx→1− | =[ | ]=∞ | ||
| 1−x | 0+ |