| π | ||
Oblicz tg x, wiedząc, że x ≠ | + kπ, gdzie k∊C: | |
| 2 |
| π | ||
cosx * cos (x + | ) = sin2x | |
| 4 |
| π | ||
cosx*cos(x+ | )=2sinx*cosx | |
| 4 |
| π | ||
cos(x+ | )=2sinx | |
| 4 |
| π | π | 1 | ||||
sin | = cos | = | ||||
| 4 | 4 | √2 |
| 4 | ||
Wyszło mi że tgx = | − 1 | |
| √2 |
| π | π | π | 1 | 1 | ||||||
cos(x + | ) = cosx cos | − sinx sin | = | cosx − | sinx | |||||
| 4 | 4 | 4 | √2 | √2 |
| π | 1 | 1 | ||||
cos(x + | ) = 2sinx ⇒ | cosx − | sinx = 2sinx | |||
| 4 | √2 | √2 |
| 1 | 1 | |||
(2+ | ) sinx = | cosx ⇒ .... | ||
| √2 | √2 |
| π | ||
cosx * cos (x + | ) = 2 sinxcosx |: cosx | |
| 4 |
| π | ||
cos (x + | ) = 2 sinx | |
| 4 |
| √2 | √2 | ||
cosx − | sinx = 2sinx | ||
| 2 | 2 |
| √2 | √2 | √2 | |||
cosx = (2 + | )sinx |: | ||||
| 2 | 2 | 2 |
| √2 | √2 | |||
tgx = (2 + | ) : | |||
| 2 | 2 |
| √2 | √2 | |||
do miejsca | cosx = (2 + | )sinx jest dobrze, dalej nie. | ||
| 2 | 2 |
Dzięki