e−5x−e10x | ||
oblicz granice dla lim x→0 | ||
tg5x |
e−5*0 − e10*0 | e0 − e0 | 1 − 1 | 0 | |||||
[ | ] = [ | ] = [ | ] = [ | ] − mamy zatem | ||||
tg5*0 | tg0 | 0 | 0 |
e−5x − e10x | ||
limx → 0 | = (H) = | |
tg(5x) |
−5e−5x − 10e10x | −5 − 10 | |||
limx → 0 | = | = −3 | ||
5[tg2(5x) + 1] | 5 |
tg(x) | ||
limx→0 | = 1 | |
x |
ex−1 | ||
limx→0 | = 1 | |
x |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |