| 1+x | ||
∫√ | dx | |
| 1−x |
| 9 − x2 | ||
Początek jest taki: ∫√9 − x2 dx = ∫ | dx = | |
| √9 − x2 |
| dx | x2 | |||
= 9∫ | − ∫ | dx = ... | ||
| √9 − x2 | √9 − x2 |
| 1+x | 1+x | |||
√ | = t ⇒ | = t2 ⇔ 1+x= t2(1−x) ⇔ x(t2+1)= t2−1 ⇒ | ||
| 1−x | 1−x |
| t2−1 | t2+1−2 | |||
⇒ x= | ⇔ x= | ⇔ | ||
| t2+1 | t2+1 |
| 2 | 2*2t | |||
⇔ x= 1− | ⇒ dx= | dt , więc twoja całka przyjmie postać : | ||
| t2+1 | (t2−1)2 |
| 4t2 | ||
...= ∫ | dt= wymierna i rozkładaj sobie na 4 ułamki proste . ... ![]() | |
| (t−1)2 (t+1)2 |
| √1+x | ||
t = | ||
| √1−x |
| 1+x | ||
t2 = | ||
| 1−x |
| x+1 | x−1+2 | 2 | ||||
t2 = − | = − | = −1 − | ||||
| x−1 | x−1 | x−1 |
| 2 | |
= −1 − t2 | |
| x−1 |
| 2 | ||
− | = x − 1 | |
| t2+1 |
| 2 | t2 − 1 | |||
x = 1 − | = | |||
| t2+1 | t2 + 1 |
| 1 | dx | x | ||||
... = 9 * | ∫ | dx − ∫ (x * | dx = 3A − B | |||
| 3 | √ 1 − (x/3)2 | √9 − x2 |
| dx | ||
A = ∫ | dx = ... | |
| √ 1 − (x/3)2 |
| x | ||
podstawienie | = t | |
| 3 |
| x | ||
B = ∫ (x * | dx = ... | |
| √9 − x2 |
| x | ||
przez części: u = x v' = | ||
| √9 − x2 |
| x | ||
u' = 1 v = ∫ | dx = ... = −√9 − x2 | |
| √9 − x2 |