Basia:
√x = x
1/2 = x
3/6 = (x
1/6)
3
3√x = x
1/3 = x
2/6 = (x
1/6)
2
t = x
1/6
t
6 = x
6t
5dt = dx
| | t3 | | t8 | |
J = ∫ |
| *6t5 dt = 6∫ |
| dt |
| | t2+1 | | t2+1 | |
t
8 : (t
2+1) = t
6 − t
4 + t
2 − 1
−t
8 − t
6
−−−−−−−−−−−−−−−−−
−t
6
t
6 + t
4
−−−−−−−−−−−−−−−−−−−−−
t
4
−t
4 − t
2
−−−−−−−−−−−−−−−−−−−−
−t
2
t
2 + 1
−−−−−−−−−−−−−−−−−−−−
1
| t8 | | 1 | |
| = t6 − t4 + t2 − 1 + |
| |
| t2+1 | | t2+1 | |
| | t8 | | 1 | |
∫ |
| dt = ∫(t6 − t4 + t2 − 1 + |
| )dt |
| | t2+1 | | t2+1 | |
dalej już łatwo