| a | b | c | |||
+ | + | =0 , gdzie a≠b, b≠c i a≠c to | |||
| b−c | c−a | a−b |
| a | b | c | |||
+ | + | =0 | |||
| (b−c)2 | (c−a)2 | (a−b)2 |
| a | b | c | |||
+ | + | =0 ⋀ a≠b, b≠c i a≠c | |||
| b−c | c−a | a−b |
| a | b | c | |||
+ | + | =0 *(b−c)(c−a)(a−b) | |||
| b−c | c−a | a−b |
| 1 | 1 | 1 | ||||
Pomnóż równość z założenia przez | , potem przez | a na koniec przez | ||||
| b−c | c−a | a−b |
), dostaniesz pewne 3 równości i
dodając je stronami powinieneś dostać tezę.
| a | b | c | |||
+ | + | = 0 | |||
| (b−c)2 | (c−a)(b−c) | (a−b)(b−c) |
| a | b | c | |||
+ | + | = 0 | |||
| (b−c)(c−a) | (c−a)2 | (a−b)(c−a) |
| a | b | c | |||
+ | + | = 0 | |||
| (b−c)(a−b) | (c−a)(a−b) | (a−b)2 |
| a | b | c | ||||
0 = ( | + | + | ) + | |||
| (b−c)2 | (c−a)2 | (a−b)2 |
| b | c | a | c | |||||
+ | + | + | + | |||||
| (c−a)(b−c) | (a−b)(b−c) | (b−c)(c−a) | (a−b)(c−a) |
| a | b | |||
+ | ||||
| (b−c)(a−b) | (c−a)(a−b) |
| b | c | a | c | ||||
+ | + | + | + | ||||
| (c−a)(b−c) | (a−b)(b−c) | (b−c)(c−a) | (a−b)(c−a) |
| a | b | |||
+ | = | |||
| (b−c)(a−b) | (c−a)(a−b) |
| b(a−b)+c(c−a)+a(a−b)+c(b−c)+a(c−a)+b(b−c) | ||
= 0 | ||
| (c−a)(b−c)(a−b) |