rozwiązała je np. na kartce i przesłała mi mailowo
zdjecie/skan...
Byłbym bardzo bardzo wdzięczny.
| 2sinx+3cosx | ||
∫ | dx | |
| sin2xcox+2cos3x |
| dx | ||
∫ | ||
| √x(1+3√x)2 |
| 3(x4+2x2+2) | ||
∫ | ||
| x5+2x4+2x3−x2−2x−2 |
| 3(x4+2x2+2) | ||
3) ∫ | dx = | |
| x5+2x4+2x3−x2−2x−2 |
| 3(x4+2x2+2) | ||
= ∫ | dx = | |
| x3(x2+2x+2)−1(x2+2x+2) |
| 3(x4+2x2+2) | ||
= ∫ | dx = | |
| (x2+2x+2) (x3−1) |
| 3(x4+2x2+2) | ||
= ∫ | dx = | |
| (x2+2x+2) (x−1)(x2+x+1) |
| 3x4+6x2+6 | ||
= ∫ | dx = | |
| (x2+2x+2) (x−1)(x2+x+1) |
| 3x4+6x2+6 | ||
ale | = | |
| (x2+2x+2) (x−1)(x2+x+1) |
| Ax+B | C | Dx+E | ||||
= | + | + | = i teraz sam(a) | |||
| x2+2x+2 | x−1 | x2+x+1 |
| 1 | dx | ||
dx= 3t2dt ⇒ | = 6t2dt , zatem | ||
| 2√x | √x |
| dx | 6t2dt | |||
∫ | = ∫ | = dalej rozłóż sobie | ||
| √x(1+3√x)2 | (1+t2)2 |
| 2sinx+3cosx | ||
1) ∫ | dx = | |
| sin2xcosx+2cos3x |
| cosx(2tgx+3) | 2tgx+3 | |||
= ∫ | dx = ∫ | dx = | ||
| cosx(sin2x+2cos2x) | sin2x+cos2x+cos2x |
| 2tgx+3 | x | |||
= ∫ | dx = i teraz spróbuj może podstawienie tg | = t, | ||
| 1+cos2x | 2 |
jeszcze nie wiem. ...