matematykaszkolna.pl
Czy to jest dobrze? golo:
 lnx 
Witam sprawdzam czy f jest rosnąca czy malejąca pochodnymi. No i pochodna z funkcji

w
 x 
 (lnx)'*x − lnx*(x)' 1−lnx 1−x 
odpowiedzi jest rozpisana tak:

=

=

 x2 x2 x2 
 1−lnx 1−x 
No i zastanawiam się z jakiej racji wychodzi

=

 x2 x2 
 1−x 
Dalej jest liczone

< 0 | * x2
 x2 
1−x<0 x>1 i wychodzi ze dla x większych od jedynki zachodzi ta nierówność. Ale czy to jest dobrze jeśli juz wcześniej jest podejrzane? Wg mnie to błąd. Proszę o pomoc.
29 sie 19:29
wredulus_pospolitus: oczywiście że błąd ... chyba że są jakieś 'ukryte' 'hinty' w treści zadania
29 sie 19:33
golo:
 lnn 
Zadanie ogólnie jest: rozstrzygnij czy szereg od 1 do ∑(−1)n

jest zbieżny
 n 
bezwzględnie czy warunkowo. No i wychodzi, że bezwzględnie nie jest zbieżny. Zatem sprawdzamy
 lnn 
z kryt. Liebnitza, czy jest warunkowo. No i 1 warunek, czyli czy lim

= 0 jest
 n 
spelniony i teraz trzeba zobaczyć, czy warunek że ciąg ten jest malejący jest spełniony. Zatem
 lnn 
liczymy pochodną z

 n 
29 sie 19:39
Mila: rysunek zał. x>0
 lnx 
1 

*x−(lnx)*1
x 
 1−lnx 
(

)'=

=

 x x2 x2 
1−lnx 

>0⇔1−ln(x)>0⇔1>ln(x}
x2 
ln(x)<1⇔ ln(x)<ln(e) i x>0⇔x>0 i x<e⇔ dla x∊(0,e) funkcja jest rosnąca dla x>e funkcja jest malejąca
 1 
dla x=e funkcja ma maksimum ymax=

 e 
29 sie 19:42
golo: Dzięki wielkie, właśnie doszedłem do podobnych wniosków emotka
29 sie 19:45
Mila: emotka Powodzenia.
29 sie 19:46