| dx | ||
∫ | ||
| sin3x |
| sin2x+cos2x | ||
=∫ | dx= | |
| sin3x |
| 1 | cosx | |||
=∫ | dx+∫cosx* | dx | ||
| sinx | sin3x |
| dx | 1 | dx | ||||
∫ | = ∫ | * | = | |||
| sin3x | sinx | sin2x |
| dx | ||
= | u=sin−1x ⇒ du= −sin−2x*cosx dx, dv= | ⇒ v= −ctgx |= | |
| sin2x |
| −cosx | cos2x | −cosx | 1−sin2x | |||||
= | − ∫ | dx= | − ∫ | dx= | ||||
| sin2x | sin3x | sin2x | sin3x |
| −cosx | dx | dx | ||||
= | − ∫ | + ∫ | , zatem | |||
| sin2x | sin3x | sinx |
| dx | −cosx | x | ||||
2 ∫ | = | + ln | tg | | / : 2 stąd | |||
| sin3x | sin2x | 2 |
| dx | 1 | x | cosx | |||||
∫ | = | ln | tg | | − | + C − szukana całka . ... ![]() | ||||
| sin3x | 2 | 2 | 2sin2x |
| cosx | ||
| u= | v'=cosx | |
| sin3x |
| −sin4x−cosx*3sinx | ||
| u'= | v= sinx | |
| sin6x |
| 1 | x | |||
∫ | dx=ln|tg | | jest wyprowadzona w Krysickim | ||
| sinx | 2 |
| cosx | ||
∫cosx * | dx=... | |
| sin3x |
| cosx | cosx | |||
[cosx=u,−sinx dx=du, dv= | dx, v=∫ | dx, sinx=t, cosxdx=dt, | ||
| sin3x | sin3x |
| 1 | 1 | −1 | 1 | |||||
v=∫ | dt= − | t−2= | * | ] | ||||
| t3 | 2 | 2 | sin2x |
| −1 | cosx | −1 | 1 | ||||
...= | −( | ∫(−sinx* | dx= | ||||
| 2 | sin2x | 2 | sin2x |
| −cosx | 1 | 1 | ||||
= | − | ∫ | dx | |||
| 2sin2x | 2 | sinx |
| 1 | |
= csc3x? | |
| sin3x |
(cosekans x)3 = csc3x