| √3 | ||
sin(2x+1)= | ||
| 2 |
| π | π | |||
2x+1= | +2kπ lub 2x+1=π− | +2kπ | ||
| 3 | 3 |
| π | π | |||
2x= | − | +2kπ | ||
| 3 | 2 |
| 2π | 3π | |||
2x= | − | +2kπ | ||
| 6 | 6 |
| π | ||
2x=− | +2kπ /2 | |
| 6 |
| π | 1 | |||
x=− | * | +kπ | ||
| 6 | 2 |
| π | ||
x=− | +kπ | |
| 12 |
| π | ||
2x+1=π− | +2kπ | |
| 3 |
| 3π | π | |||
2x+1= | − | +2kπ | ||
| 3 | 3 |
| 2π | π | |||
2x= | − | +2kπ | ||
| 3 | 2 |
| 4π | 3π | |||
2x= | − | +2kπ | ||
| 6 | 6 |
| π | ||
2x= | +2kπ /2 | |
| 6 |
| π | ||
x= | +kπ | |
| 12 |
| π | ||
od kiedy to 1 = | | |
| 2 |
| π | ||
sin 1 = | wiedziałem że coś nie tak ![]() | |
| 2 |
| π | ||
sin1 = | | |
| 2 |
| π | 1 | π | 1 | |||||
x= | − | +kπ lub x=− | − | +kπ k∊C teraz ok ? | ||||
| 6 | 2 | 3 | 2 |
| π | ||
Rozpisałeś na początku dobrze, ale nie wiem skąd tam wziałeś | . | |
| 2 |
| π | ||
2x+1= | +2kπ, k∊C ← pisz to założenie | |
| 3 |
| π | ||
2x= | −1+2kπ /:2 | |
| 3 |
| π | 1 | |||
x= | − | +kπ | ||
| 6 | 2 |
| π | ||
2x+1=π− | +2kπ | |
| 3 |
| 2 | ||
2x= | π−1+2kπ /:2 | |
| 3 |
| π | 1 | |||
x= | − | +kπ | ||
| 3 | 2 |
| π | 1 | |||
x = kπ + | − | |||
| 6 | 2 |
| π | 1 | |||
x = kπ + | − | |||
| 3 | 2 |
| π | ||
to było do Kostka, to się zgodzę, przed | nie ma być minusa. | |
| 3 |