1)y=x2√1+√x
| 1 | 1 | |||
2) y= | + | |||
| cos2x | sin2x |
| (1−cos2x)10 | ||
3) y= | ||
| √sinx |
| 1 | 1 | |||
1) y'=2x√1+√x+x2*( | * | ) = 2x√1+√x+x2*(4√x*√1+√x) = | ||
| 2√1+√x | 2√x |
| 2x√1+√x*(4√x*√1+√x) | ||
+ x2*(4√x*√1+√x) =po skróceniu | ||
| (4√x*√1+√x) |
| 8x√x+9x2 | ||
wychodzi = | Natomiast wynik jest: | |
| 4√x*√1+√x |
| 8x√x+9x2 | ||
Trochę się różni, więc się zastanawiam, gdzie zrobiłam błąd... | ||
| 4√x*√1+x2 |
| 1 | −2cosx*(−sinx) | sin2x | ||||
( | )' = | = | ||||
| cos2x | (cos2x)2 | (cos2x)2 |
| 1 | −2sinx*cosx | −sin2x | ||||
( | )' = | = | ||||
| sin2x | (sin2x)2 | (sin2x)2 |
| −16cos2x | ||
jak to zrobić. Prawidłowy wynik to: | ||
| (sin2x)3 |
| 10(1−cos2x)9*(−2cosx)*(−sinx)*√sinx | ||
3) y'= | − | |
| √sinx2 |
| 10(1−cos2x)9*sin2x*√sinx | |||||||||||
= | − | |||||||||||
| √sinx2 | sinx |
| ||||||||||
| sinx |
Prawidłowy wynik to: 19,5cosx*sin18,5x
Poratuje ktoś?
| x2 | 1 | |||
1) (x2 * √1+√x)' = 2x√1+√x + | * | = | ||
| 2√1+√x | 2√x |
| 2x√1+√x*2√1+√x*2√x + x2 | |
= | |
| 2√1+√x*2√x |
| 8x√1+√x*√1+√x*√x + x2 | |
= | |
| 4√1+√x*√x |
| 8x3/2(1+√x) + x2 | |
= | |
| 4√1+√x*√x |
| 8x3/2(1+√x) + x2 | |
= | |
| 4√x2(1+√x) |
| 8x3/2(1+√x) + x2 | |
= | |
| 4√x21+x5/2 |
| 1 | 1 | sin2+cos2x | 4 | 4 | ||||||
f(x)= | + | = | = | = | ||||||
| cos2x | sin2x | sin2xcos2x | (2sinxcosx)2 | sin22x |
| −2(sin2x)(cos2x)•2 | cos2x | |||
f'(x)=4• | =−16 | |||
| sin42x | sin32x |
| sin2x)10 | 1 | |||
=(sinx)20− | =(sinx)19,5. | |||
| √sinx | 2 |