Inny sposób:
h − wysokość Δ
x + (12 − x) = 12
Mamy
x2 + h2 = 62 = 36
(12 − x)2 + h2 = 102 = 100 ; odejmujemy stronami
(12 − x)2 − x2 = 64
144 − 24x + x2 − x2 = 64
24x = 80
| 10 | ||
x = | ||
| 3 |
| 100 | 324 − 100 | 224 | ||||
h2 = 36 − x2 = 36 − | = | = | ||||
| 9 | 9 | 9 |
| 4√14 | ||
h = | ||
| 3 |
| 4√14 | ||
P = 0,5a*h = 0,5*12* | = 8√14 | |
| 3 |
Jeszcze inny sposób
| 102+122−662 | 13 | |||
z tw. kosinusów cosα= | = ....= | |||
| 2*10*12 | 15 |
| √56 | 2√14 | |||
sinα= √1−cos2α = √1−169225= | = | |||
| 15 | 17 |
| 1 | 2√14 | |||
P= | *10*12*sinα= 60* | =8√14 [j2] | ||
| 2 | 15 |
| 102+122−62 | 13 | |||
oczywiście ma być : cosα= | = ...= | |||
| 2*10*12 | 15 |
| 1 | ||
p= | Obw=14 cm | |
| 2 |