| x3−4x2+1 | ||
∫ | dx | |
| (x−2)4 |
| A | B | C | D | |||||
∫ ... dx = | + | + | + | |||||
| x−2 | (x−2)2 | (x−2)3 | (x−2)4 |
Ten sposob jest latwy bo jak "piramidka"
pokolei wychodzą zmienne
moglby ktos podac pelne rozwiazanie?
| (t+2)3−4(t+2)2+1 | ||
∫ | = | |
| t4 |
| t3+2t2−4t−7 | ||
=∫ | dt= | |
| t4 |
| 1 | 2 | 4 | 7 | |||||
=∫( | + | − | − | ) dt= | ||||
| t | t2 | t3 | t4 |
| −6x2+30x−29 | ||
=ln(x−2)+ | +C | |
| 3(x−2)4 |