| ax+by+c | ||
y'=f( | ) | |
| ax+by+c |
| −3x+6y−2 | ||
a) y'= | ||
| x−2y−1 |
| dy | −3(x−2−2 | ||
= | |||
| dx | x−2y−1 |
| x−t | 1 | 1 | ||||
y= | = | x− | t | |||
| 2 | 2 | 2 |
| 1 | 1 | |||
y'= | − | t' | ||
| 2 | 2 |
| dy | −3t−2 | ||
= | |||
| dx | t−1 |
| 1 | 1 | −3t−2 | |||
− | t'= | ||||
| 2 | 2 | t−1 |
| 1 | −3t−2 | 1 | ||||
− | t= | − | ||||
| 2 | t−1 | 2 |
| 6t+4 | ||
t'= | −1 | |
| t−1 |
| dt | 6t+4−t+1 | ||
= | |||
| dx | t−1 |
| dt(4−1) | |
=dx | |
| 5t+5 |
| −2x−3y+1 | −1(2x+3y)+1 | 1 | 2x+3y+1 | |||||
b)y' = | = | = − | * | |||||
| 4x+6y−5 | 2(2x+3y)−5 | 2 | 2x+3y−5 |
| 1 | 2 | |||
y' = | t' − | |||
| 3 | 3 |
| 1 | 2 | 1 | t+1 | ||||
t' − | = − | * | |||||
| 3 | 3 | 2 | t−5 |
| t+1 | ||
2t' − 4 = −3 | ||
| t−5 |
| dt | −3t −2 + 4t − 20 | |||
2 | = | |||
| dx | t − 5 |
| dt | t − 23 | |||
2 | = | |||
| dx | t − 5 |
| dt(t − 5) | ||
2 | = dx | |
| t − 23 |
| tdt | dt | |||
2 ∫ | − 10 ∫ | = dx | ||
| t − 23 | t − 23 |
| 1−u' | ||
Podstawienie u = x−2y−1 → u' = 1 − 2y' → y' = | ||
| 2 |
| 1−u' | ||
5 + 3u + u | = 0 / * 2 | |
| 2 |
| u | ||
du = dx | ||
| 10+7u |
| 1 | 10 | |||
u − | ln|10+7u| = x + c | |||
| 7 | 49 |
| u'−2 | ||
Podstawienie u = 2x+3y−1 → u' = 2 + 3y' → y' = | ||
| 3 |
| u'−2 | ||
u + (2u − 3) | = 0 | |
| 3 |
| 2u−3 | ||
du = dx | ||
| u−6 |
| ax+by+c | ||
y'=f | ||
| ax+by+c |
| ax+by+c | ||
y' = f( | ) | |
| Ax+By+C |
| a(x−x0)+b(y−y0) |
| ||||||||||||
y' = f( | ) = f( | ) | |||||||||||
| A(x−x0)+B(y−y0) |
|
| y−y0 | ||
i wystarczy podstawić u = | ||
| x−x0 |