| a3+b3 | a2+b2 | a2 | a | |||||
( | − | : ( | − | )= | ||||
| a3−b3 | a2−b2 | a3−b3 | a2+ab+b2 |
| (a3+b3)(a2−b2)−(a2+b2)(a3−b3) | ||
... = | : | |
| (a3−b3)(a2−b2) |
| a2(a2+ab+b2)−a(a3−b3) | ||
: | = | |
| (a3−b3)(a2+ab+b2) |
| (a3+b3)(a+b)−(a2+b2)(a2+ab+b2) | a2+ab+b2 | |||
= | * | = | ||
| a+b | a4+a3b+a2b2−a4+ab3 |
| (a3+b3)(a+b)−(a2+b2)(a2+ab+b2) | a2+ab+b2 | |||
= | * | = | ||
| a+b | ab(a2+ab+b2) |
| (a3+b3)(a+b)−(a2+b2)(a2+ab+b2) | ||
= | = | |
| ab(a+b) |
| a4+a3b+ab3+b4−a4−a3b−2a2b2−ab3−b4 | ||
= | = | |
| ab(a+b) |
| −2a2b2 | 2ab | |||
= | = − | , gdzie a≠b i a≠−b . ... i tyle, o ile | ||
| ab(a+b) | a+b |
....... (bo mi się nie chciało tego pisać
dziękuję .
| (a3+b3)(a2−b2)−(a2+b2)(a3−b3) | a3−b3 | ||
* | = | ||
| (a3−b3)(a2−b2) | a2−a(a−b) |
| (a−b)[(a3+b3)(a+b)−(a2+b2)(a2+ab+b2)] | ||
= | = | |
| (a−b)(a+b)ab |
| a4+a3b+ab3+b4−a4−a3b−a2b2−a2b2−ab3−b4 | −2a2b2 | |||
= | = | = | ||
| ab(a+b) | ab(a+b) |
| 2ab | ||
= − | i stosowne założenia ![]() | |
| a+b |