| ln(n) | ||
∑ (−1)n* | ||
| n |
| ln(n + 1) | ln(n) | ||
<= | |||
| n + 1 | n |
| n*ln(n + 1) − (n + 1)*ln(n) | |
<= 0 | |
| n(n + 1) |
| n*ln(n + 1) − (n + 1)*ln(n) | |
<= 0 ⇔ n*ln(n + 1) − (n + 1)*ln(n) <= 0 | |
| n(n + 1) |
| n+1 | ||
n*ln | − ln(n) <= 0 | |
| n |
| n+1 | ||
ln | n − ln(n) <= 0, | |
| n |
| n + 1 | ||
ln | n −> 1 | |
| n |
| n+1 | ||
ln | n − ln(n) dla pewnego n > N, bedzie mniejsze rowne 0 | |
| n |
| |||||||||||
ln | → − ∞ (ln0) | ||||||||||
| n |