| 1 | i | |||
S = limn→∞ | *∑i=1n ln(1+ | ) ![]() | ||
| n | n |
| t = 1+x | ||
∫01 ln(1+x) dx = | = ∫01 lnt dt | |
| dt = dx |
| u = lnt, v' = 1 | |||||||||||
∫ln(t)dt = | = t*lnt −∫dt = t*lnt − t = (1+x)*ln(1+x) − | ||||||||||
|
| 1 | −1 | |||
f'(x) = (1−x)1/2 = | * (1−x)−1/2 * (−1) = | *(1−x)−1/2 | ||
| 2 | 2 |
| 1 | −1 | 1 | ||||
f''(x) = − | * | * (1−x)−3/2 * (−1) = − | (1−x)−3/2 | |||
| 2 | 2 | 4 |
| 1 | ||
f'(0) = − | ||
| 2 |
| 1 | ||
f''(0) = − | ||
| 4 |
| x | x2 | x | x2 | |||||
√1−x ≈ 1 − | − | = 1 − | − | |||||
| 2 | 4*2! | 2 | 8 |
| x2 | x3 | 1 | ||||
ln(1−x) ≈ −x − | − | , dla |x| ≤ | ||||
| 2 | 3 | 10 |