| 1 | ||
Oblicz długość łuku krzywej y = √1−x w przedziale <0; | > | |
| 2 |
| −1 | ||
f'(x) = | ||
| 2√1−x |
| 1 | 1 | |||
f'(x)2 = | = | |||
| 4(1−x) | 4−4x |
| 1 | ||
∫01/2 √1+ | dx = | |
| 4−4x |
| 1 | t = 4−4x | |||
∫√1+ | dx = | = | ||
| 4−4x | dt = −4dx |
| 1 | 1 | 1 | 1 | |||||
− | ∫√1+ | (−4) dx =− | ∫ √1 + | dt = | ||||
| 4 | 4−4x | 4 | t |
| −x | x2 | |||
y' = | ⇒ (y')2 = | |||
| √1−x2 | 1−x2 |
| x2 | 1−x2x + x2 | 1 | ||||
∫√1+ | dx =∫√+ | dx = ∫√ | dx = | |||
| 1−x2 | 1−x2 | 1−x2 |
| 1 | ||
∫ | dx = arcsinx + C | |
| √1−x2 |
| 1 | 1 | π | ||||
∫01/2 | dx = arcsinx |01/2 = arcsin( | ) − arcsin(0) = | ||||
| √1−x2 | 2 | 3 |
| 5−4x | ||
u2 = | ||
| 4−4x |
| 5−4u2 | ||
x = | ||
| 4−4u2 |
| −8u(4−4u2) + 8u(5−4u2) | 8u | u | ||||
dx = | du = | du = | du | |||
| (4−4u2)2 | (4−4u2)2 | 2(1−u2)2 |
| u2 | ||
J = ∫√5/4√3/2 | du = ... | |
| 2(1−u2)2 |
sorry..