| a1−2+a3−9 | ||
a2−3= | /*2 | |
| 2 |
| 25−15 | ||
a1= | =5. | |
| 2 |
| 25+15 | ||
a2= | =20 | |
| 2 |
| 1 | ||
20,10,5. q= | ||
| 2 |
ciąg geom.: a + aq + ag2 = 35 a(1 + q + q2) = 35 (1)
ciąg arytm.: a−2, aq−3, aq2−9: a−2 + aq2−9 = 2aq−6 (z własności ciągu arytm.)
a(1 − 2q + q2) = 5 (2)
| a(1 + q + q2) | ||
Dzielę równania (1) i (2) stronami: | = 7 | |
| a(1 − 2q + q2) |
| 5 | ||
stąd 7 − 14q + 7q2 = 1 + q + g2 ⇒ 6q2 − 15q + 6 = 0/:6 ⇒ q2 − | q = −1 | |
| 2 |
| 5 | 25 | 25 | 5 | 9 | ||||||
q2 − | q + | = −1 + | ⇒ (q − | )2 = | (bez Δ) | |||||
| 2 | 16 | 16 | 4 | 16 |
| 5 | 3 | 5 | 3 | 1 | ||||||
q − | = − | lub q − | = | ⇒ q = | lub q = 2 | |||||
| 4 | 4 | 4 | 4 | 2 |
| 5 | ||
(2) dla q = 0,5: a = | = 20, aq = 10, aq2 = 5 | |
| 1 − 1 + 0,25 |
| 5 | ||
dla q = 2: a = | = 5, aq = 10, aq2 = 20 | |
| 1 − 4 + 4 |
ciąg arytm. (an): a1 = a−r, a2 = a, a3 = a+r
ciąg geom. (bn): b1 = a−r+2, b2 = a+3, b3 = a+r+9 i a−r+2 + a+3 + a+r+9 = 35 ⇒ a = 7
b1 * b3 = b22 ⇒ (9−r)(16+r) = 102 ⇒ r2 + 7r − 44 = 0 ⇒ (r − 4)(r + 11) = 0
dla r = 4 i a = 7: b1 = 9 − 4 = 5, b2 = 10, b3 = 16 + 4 = 20,
dla r = −11 i a = 7: b1 = 9 + 11 = 20, b2 = 10, b3 = 16 − 11 = 5