1 | ||
To jest trudne zadanie. Mogę podpowiedzieć, że pole jest równe | pola trójkąta ABC. | |
7 |
2c*h3 | ||
PACR= | =ch3 | |
2 |
c*h3 | 1 | 3 | ||||
PBCR= | = | ch3 → 2PBCR=PACR → PABC= | PACR | |||
2 | 2 | 2 |
3 | ||
PABC= | PBCQ | |
2 |
3 | ||
PABC= | PABP | |
2 |
3 | ||
PABC= | PACR | |
2 |
3 | ||
3PABC= | (PBCQ+PABP+PACR) | |
2 |
1 | ||
PΔBGR= | P−3S | |
3 |
1 | ||
dalej sobie poradzisz ( ma wyjść S= | P} | |
21 |
1 | ||
P1 + P2 + P3 = | *21 = 7 | |
3 |
1 | ||
P3 + P4 + P5 = | *21 = 7 | |
3 |
1 | ||
P5 + P6 + P1 = | *21 = 7 | |
3 |
1 | ||
PEBC = | *21 = 7 | |
3 |
2 | 2 | 4 | 28 | |||||
ΔHBG ∼ ΔEBC w skali | , PHBG = PEBC*( | )2 = 7* | = | |||||
3 | 3 | 9 | 9 |
2 | 28 | 98 | ||||
PABG = | *21 = 14, PAHG = PABG − PHBG = 14 − | = | ||||
3 | 9 | 9 |
6c | 6 | |||
ΔAER ∼ ΔAHG w skali | = | , | ||
7c | 7 |
6 | 98 | 36 | ||||
P0+P4 = PAER = PAHG*( | )2 = | * | = 8 | |||
7 | 9 | 49 |
2 | ||
ΔAEC: P2 + P3 + P4 + P0 = | *21 = 14 ⇒ P2 + P3 + 8 = 14 ⇒ P2 + P3 = 6 | |
3 |
1 | ||
ΔAGC: P1 + P2 + P3 = | *21 = 7 ⇒ P1 + 6 = 7 ⇒ P1 = 1 | |
3 |
1 | ||
PABL = | *21 = 7 | |
3 |
2 | 2 | 4 | 28 | |||||
ΔAEM ∼ ΔABL w skali | , PAEM = PABL*( | )2 = 7* | = | |||||
3 | 3 | 9 | 9 |
2 | 28 | 98 | ||||
PAEC = | *21 = 14, PMEC = PAEC − PAEM = 14 − | = | ||||
3 | 9 | 9 |
6b | 6 | |||
ΔLQC ∼ ΔMEC w skali | = | , | ||
7b | 7 |
6 | 98 | 36 | ||||
P0 + P2 = PLQC = PMEC*( | )2 = | * | = 8, P2 = P4 | |||
7 | 9 | 49 |
2 | ||
ΔLBC: P1 + P2 + P0 + P6 = | *21 = 14 ⇒ 1 + 8 + P6 = 14 ⇒ P6 = 5 | |
3 |
1 | ||
ΔEBC: P1 + P6 + P5 = | *21 = 7 ⇒ 1 + 5 + P5 = 7 ⇒ P5 = 1 | |
3 |
1 | ||
PAGC = | *21 = 7 | |
3 |
2 | 2 | 4 | 28 | |||||
ΔLNC ∼ ΔAGC w skali | , PLNC = PAGC*( | )2 = 7* | = | |||||
3 | 3 | 9 | 9 |
2 | 28 | 98 | ||||
PLBC = | *21 = 14, PLBN = LLBC − PLNC = 14 − | = | ||||
3 | 9 | 9 |
6a | 6 | |||
ΔPBG ∼ ΔLBN w skali | = | , | ||
7a | 7 |
6 | 98 | 36 | ||||
P0 + P6 = PPBG = PLBN*( | )2 = | * | = 8 ⇒ P0 + 5 = 8 | |||
7 | 9 | 49 |