Prosze o pomoc - nierówności wymierne.
Inessoleve: Czy mogłby ktos rozwiązac chociaż 1 przykład zebym zrozumiał jak to zrobić ?
1) x3≥1X
2) 3x−5≥0
3) x(x−2)2≤0
4) 5−x2x−3≥0
5) x−1X≥2
6) (x−1}2x=3≤0
7) (x2+1)xx−1≤0
12 cze 20:18
12 cze 20:20
PW: Wszystkie zadania 2), 3), 4), 6), 7) są "na jedno kopyto" − iloraz ma taki sam znak jak
iloczyn, np w 7) nierówność jest równoważna nierówności
(x2+1)x(x−1) ≤ 0,
a po zauważeniu, że x2+1 jest dodatnie (można podzielić przez to stronami nie zmieniając
nierówności na przeciwną), zostaje nierówność
x(x−1) ≤ 0.
Rysujemy parabolę i po ptokach.
12 cze 20:28
Inessoleve: Czyli takie rozwiazanie jest dobre ?
2) 3x−5≥0 /*(x−5)2 x≠5
3(x−5)≥0 / :3
x−5≥0
x≥5 xE(5;∞)
4) 5−x2x+3≥0 /*(2x=3)2 x≠−112
(5−x)(2x+3)≥0
x=5 x=−112 xE(−112;5>
12 cze 20:39
PW: Tak, mnożysz obie strony nierówności przez wyrażenie dodatnie (...)
2.
Jest to jednak stosowanie tej samej metody "na siłę".
w 2) wystarczyło zauważyć, że licznik jest dodatni, a więc nierówność
jest równoważna nierówności
x−5>0.
12 cze 20:49
Inessoleve: Okej, dzieki wielkie. Z reszta już powinienem sobie poradzić ; )
12 cze 20:52