matematykaszkolna.pl
pomoc pit:
 1 
Proszę o pomoc w całce ∫

arctgxdx
 x2 
12 cze 11:49
asdf: u = arctgx, v' = 1/x2
 1 −1 
u' =

v =

 x2+1 x 
−arctgx 1 

+ ∫

dx
x x(x2+1) 
 1 
I1 = ∫

dx − to policzysz całką wymierną:
 x(x2+1) 
1 = A(x2+1) + (Bx+C)x 1 = Ax2 + A + Bx2+ Cx A+B = 0 C=0 A =1, ⇒ B = −1 czyli: I1 = lnx − arctgx + C całość zsumuj i będzie ok, chyba sie nie pomylilem, jak tak to sorry, ale w pamieci liczylem az wstyd, ze taki len jestem
12 cze 11:52
asdf: jednak jest źle, I1, masz tam do policzenia całke:
 x −1 2x 1 
−∫

dx =


dx = −

ln(x2+1) +C
 x2+1 2 x2+1 2 
wez najlepiej sprawdz to od nowa czy jest ok, nie chce mi sie liczyc ..
12 cze 11:57
pit: Dziękiemotka
12 cze 12:48