g. analityczna
julaa: Dany jest odcinek AB, gdzie A(−3,2) B(2;1)
a)wyznacz współrzędne końców odcinka A'B', który jest obrazem AB w symetrii względem początku
uk. współ.
b) uzasadnij że czworokąt powstały jest równoleglobokiem. niby wiem o co chodzi a jednak nawet
mi nei wyszedł równoległobok
11 cze 22:26
Janek191:
A = ( − 3; 2) , B = ( 2; 1)
a)
x' = − x
y' = − y
więc
A' = ( 3; − 2), B' = ( − 2; − 1)
========================
b)
→
AB = [ 2 − (−3) ; 1 − 2 ] = [ 5 ; − 1 ]
→
B'A' = [ 3 − ( − 2) ; − 2 − (−1) ] = [ 5; − 1 ]
Te wektory są równe, czyli boki AB i A'B' są równe i równoległe ,a więc czworokąt
A B A' B' jest równoległobokiem.
11 cze 23:58
Janek191:
A = ( − 3; 2) , B = ( 2; 1)
a)
x' = − x
y' = − y
więc
A' = ( 3; − 2), B' = ( − 2; − 1)
========================
b)
→
AB = [ 2 − (−3) ; 1 − 2 ] = [ 5 ; − 1 ]
→
B'A' = [ 3 − ( − 2) ; − 2 − (−1) ] = [ 5; − 1 ]
Te wektory są równe, czyli boki AB i A'B' są równe i równoległe ,a więc czworokąt
A B A' B' jest równoległobokiem.
11 cze 23:59
Eta:
12 cze 00:01