| 1 | 1 | ||
< | |||
| n2 | n |
| 1 | ||
czy z tego wynika, że ∑ | jest rozbieżny ? | |
| n2 |
| n−1 | 1 | |||
tak samo z tego, że | < | nie wynika, że jest to szereg rozbieżny | ||
| n2+5 | 2n |
| n−1 | ||
an = | ||
| n2+5 |
| n | ||
an+1 = | ||
| n2+2n+6 |
| n(n2+5) − (n−1)(n2+2n+6) | ||
an+1 − an = | = | |
| (n2+5)(n2+2n+6) |
| n3+5n − n3 − 2n2 − 6n + n2 + 2n + 6 | |
= | |
| (n2+5)(n2+2n+6) |
| −n2+n + 6 | |
| (n2+5)(n2+2n+6) |
| −1−5 | ||
n1 = | = 3 | |
| −2 |
| −1+5 | ||
n2 = | = −2 | |
| −2 |
| n−1 | ||
∑ | jest rozbieżny. | |
| n2+5 |
| n | ||
Otóż dla każdego n>2 : n2+5 < n2+n2 i n−1 > | ||
| 2 |
| n−1 | 1 | n2 | ||||
∑ | ≥ 0 + | + ∑n=3.... | = | |||
| n2+5 | 9 | 2n2 |
| 1 | 1 | ||
+ ∑n=3.... | = | ||
| 9 | 4n |
| 1 | 1 | 1 | 1 | 1 | |||||
+ | ∑ | − | − | = | |||||
| 9 | 4 | n | 4 | 8 |
| 8−18−9 | 1 | 1 | 19 | 1 | 1 | ||||||
+ | ∑ | = − | + | ∑ | |||||||
| 72 | 4 | n | 72 | 4 | n |