| dx | ||
Czy mógłby ktoś mi pomóc z całką | ? | |
| (x2+1)2 |
| 1 | x+1 | 1 | ||||
powinno wyjść | + | arctg (x+1) + C. | ||||
| 2 | 2x2+2x+2 | 2 |
| tg2(u) + 1 | du | |||
∫ | du = ∫ | = ∫ cos2(u)du | ||
| [tg2(u) + 1]2 | tg2(u) + 1 |
| 1 | x2+1−x2 | |||
∫ | dx= ∫ | dx= | ||
| (x2+1)2 | (x2+1)2 |
| x2+1 | x2 | |||
=∫ | dx−∫ | dx= | ||
| (x2+1)2 | x2+1)2 |
| 1 | x | −1 | 1 | 1 | 1 | |||||||
=∫ | dx−∫x* | dx=arctgx−(x* | * | + | ∫ | dx= | ||||||
| x2+1 | (x2+1)2 | 2 | x2+1 | 2 | x2+1 |
| x | x | |||
[x=u, dx=du, dv= | dx, v=∫ | dx, podst. x2+1=t, 2xdx=dt, | ||
| (x2+1)2 | (x2+1)2 |
| 1 | 1 | 1 | 1 | 1 | 1 | |||||||
v= | ∫ | dt=− | * | =− | * | ] | ||||||
| 2 | t2 | 2 | t | 2 | x2+1 |
| x | 1 | |||
=arctgx + | − | arctgx= | ||
| 2(x2+1) | 2 |
| 1 | x | |||
= | arctg(x)+ | +C | ||
| 2 | 2(x2+1) |