| x+3√x2+6√x | ||
∫ | dx | |
| x(1+3√x) |
| (t−1)3+(t−1)2+√t−1 | ||
... = ∫ | *3(t−1)2dt= | |
| (t−1)3*t |
| (t−1)3+(t−1)2+√t−1 | ||
= 3 ∫ | dt= | |
| (t−1)*t |
| (t−1)2 | t−1 | √t−1 | ||||
= 3 ( ∫ | dt + ∫ | dt + ∫ | ) = | |||
| t | t | √t−12*t |
| t2−2t+1 | dt | dt | ||||
= 3 ( ∫ | dt + ∫ dt − ∫ | + ∫ | dt) = | |||
| t | t | t √t−1 |
| dt | dt | dt | ||||
= 3 ( ∫ tdt − 2∫dt + ∫ | + ∫ dt − ∫ | + ∫ | ) = | |||
| t | t | t √t−1 |
| dt | ||
= 3 ( 12t2 − t + ∫ | ) = i teraz znowu przez podstawienie całkę w nawiasie | |
| t √t−1 |