potęgi i logarytmy
ddd: zad 1 oblicz:
253/2 − 8−2/3
91/3 : 9−1/6
zad2 oblicz
2log5+log4−log104
zad3) oblicz x korzystając z definicji logarytmu
log1/4x=−2
logx2=1/4
26 maj 12:20
Basia:
25
3/2 − 8
2/3 = (5
2)
3/2 − (2
3)
2/3 =5
3 − 2
2 = 125−4 = 121
9
1/3:9
−1/6 = 9
(1/3)−(−1/6) = (3
2)
(2/6)+(1/6) = (3
2)
3/6 = (3
2)
1/2 = 3
1 = 3
2log5+log4−log10
4 =
log5
2+log4 − 4 = log(25*4) − 4 = log10
2−4 = 2−4 = −2
x>0
| | 1 | | 1 | | 1 | |
log1/4x = −2 ⇔ x−2 = |
| ⇔ |
| = |
| ⇔ x2=4 ⇔ x=2 |
| | 4 | | x2 | | 4 | |
x>0 i x≠1
| | 1 | |
logx2 = |
| ⇔ x1/4 = 2 ⇔ x=24=16 |
| | 4 | |
26 maj 12:34