x(t)=t−sin(t)
y(t)=1−cos(t)
0≤t≤2π
obliczamy pochodne:
| dx | |
=1−cos(t) | |
| dt |
| dy | |
=sin(t) | |
| dt |
| t | ||
(1−cos(t))=2sin2 | ] | |
| 2 |
| t | t | |||
√2*0∫2π√1−cos(t) dt= √2*0∫2π√2sin2 | dt= 2*0∫2π|sin | | dt= | ||
| 2 | 2 |
| t | ||
=2*0∫2πsin | dt= | |
| 2 |
| t | ||
(sin | ≥0 dla t∊<0,2π>) czerwony wykres | |
| 2 |
| t | ||
=[2*(−2cos | }]0 2π=−4cos(π)+4cos0=8 | |
| 2 |