| 4 | 16 | |||
y= | x − | |||
| 3 | 3 |
| 2 | 8 | |||
y=− | x+ | |||
| 3 | 3 |
| 4 | 16 | |||
y= | x− | |||
| 3 | 3 |
| 2 | 8 | |||
{y=− | x+ | |||
| 3 | 3 |
| 2 | 8 | |||
y=− | *−1+ | |||
| 3 | 3 |
| 2 | 8 | |||
y= | + | |||
| 3 | 3 |
| 4 | 16 | |||
{y= | x− | |||
| 3 | 3 |
| 4 | 16 | |||
y=− | − | |||
| 3 | 3 |
| 4 | 16 | |||
{y= | x− | |||
| 3 | 3 |
| 2 | 8 | |||
{y=− | x+ | |||
| 3 | 3 |
| 4 | 16 | 2 | 8 | ||||
x− | =− | x+ | |||||
| 3 | 3 | 3 | 3 |
| 4 | 2 | 8 | 16 | ||||
x+ | x= | + | |||||
| 3 | 3 | 3 | 3 |
| 6 | 24 | 3 | |||
x= | /* | ||||
| 3 | 3 | 6 |
| 4 | 16 | |||
y= | *4− | |||
| 3 | 3 |
| |(xB−xA)(yc−ya)−(yB−ya)(xC−xA)| | ||
PΔ= | ||
| 2 |
| |(−1+1)(0−103)−(−203−103)(4+1)| | ||
PΔ= | ||
| 2 |
| |−(303)(5)| | ||
PΔ= | ||
| 2 |
| |−(10*5)| | ||
PΔ= | ||
| 2 |
| 50 | ||
PΔ= | ||
| 2 |
)
|AB|=√(xB−xA)2+(yB−yA)2
|AB|=√(−1+1)2+(−203−103)2
|AB|=√(−10)2
|AB|=100
|BC|=√(xC−xB)2+(yC−yB)2
|BC|=√(4+1)2+(203)2
|BC|=√25+4009
|BC|=√6259
|BC|=253
|AC|=√(xC−xA)2+(yC−yA)2
|AC|=√(4+1)2+(−103)2
|AC|=√25+1009
|AC|=√3259
|AC|=5√133
czyli wiemy, że bok |AB| jest najdłuższy, teraz wystarczy tylko napisać równanie wysokości
bok |AB| ma równanie x=−1
wysokośc jest prostopadła, wiec rownanie będzie postaci
y=a
gdzie "a" jest punktem y wierzchołka C
więc:
y=0
chyba nie ma nigdzie chochlika ?;>
x=1
poprawki:
A=(1;2)
B=(1;−423)
C=(4,0)
zaraz reszta
| |(xB−xA)(yC−yA)−(yB−yA)(xC−xA)| | ||
PΔ= | ||
| 2 |
| |(1−1)(−2)−(−4−1)(4−2)| | ||
PΔ= | ||
| 2 |
| |−(−5)(2)| | ||
PΔ= | ||
| 2 |
| |10| | ||
PΔ= | ||
| 2 |
|AB| i |BC|
równanie wysokości prowadzonej do boku |AB| tak czy siak będzie
y=0