Geometria na płaszczyźnie
Janek: Prosta y=3/2x − 1 przecina boki AB i AC trojkata ABC odpowiednio w punktach K i L.
Wiedzac, ze A=(3,7), B=(6,1) c=(9,9). oblicz pole trojkata AKL. Proszę o dokładne
wytłumaczenie mi zadania, bo jestem całkiem zielony w geometrii na płaszczyźnie
wredulus_pospolitus:
krok 1
rysunek

(zaznaczenie punktów A,B,C ... narysowanie boków trójkąta ... narysowanie prostej
... zaznaczenie punktów K i L − przecięcie prostej z bokami trójkąta)
krok 2
wyznaczenie równań prostych k i l zawierających boki trójkata (odpowiednio) AB i AC
krok 3
przyrównanie prostej podanej w zadaniu i prostej k ... w ten sposób wyznaczasz punkt przecięcia
się tych prostych, czyli punkt przecięcia się prostej z bokiem AB ... czyli współrzędne punktu
K
krok 4
analogicznie z drugą prostą z kroku 2
krok 5
mając współrzędne wierzchołków trójkąta AKL możesz skorzystać z jednego z wielu wzorów na
liczenie pola trójkąta (np. wzór Hammurabiego)