z tw. cosinusów
a2=32+122−2*3*12 cos 60
| 1 | ||
a2=9+144−2*36* | ||
| 2 |
| a | |
=2R | |
| sin60) |
| √3 | ||
3√13: ( | )=2R | |
| 2 |
| 2 | ||
3√13* | =2R | |
| √3 |
| 6√13 | ||
2R= | usuwam niewymierność z mianownika | |
| √3 |
| 6√39 | ||
2R= | ||
| 3 |
| 1 | ||
PΔ= | *3*12*sin60=9√3 | |
| 2 |
| 1 | ||
PΔ=p*r⇔9√3= | *(3+12+3√13)*r | |
| 2 |
| 6√3 | ||
r= | Usuwamy niewymierność | |
| 5+√13 |
| 6√3*(5−√13) | 6√3*(5−√13) | |||
r= | = | |||
| 25−13 | 12 |
| 5√3−√39 | ||
r= | ||
| 2 |