| x−1 | ||
∫ | = x+1 − 2ln(x+1) + c ? | |
| x2+2x+1 |
| 1 | x+1−2 | x−1 | x−1 | |||||
(x+1−2ln(x+1)+C)' = 1 − 2* | = | = | ≠ | |||||
| x+1 | x+1 | x+1 | x2+2x+1 |
| x−1 | x−1 | x+1−2 | 1 | 1 | |||||
= | = | = | − 2 | ||||||
| x2+2x+1 | (x+1)2 | (x+1)2 | x+1 | (x+1)2 |
| 1 | 1 | 2 | ||||
J = ∫ | dx − 2∫ | dx = ln|x+1| + | + C | |||
| x+1 | (x+1)2 | x+1 |
| 2x+2 | 2x+2 | x2+2x+1−2x−2 | ||||
(x+1−ln(x2+2x+1)+C)'=1+0− | +0=1− | = | =
| |||
| (x+1)2 | x2+2x+1 | x2+2x+1 |
| x2−1 | |
| x2+2x+1 |