| 3a*2b*3c | 18 | |||
P(ABC)= | = | , R −−− dł. promienia okręgu opisanego na trójkącie ABC | ||
| 4R | 4R |
| 3a | 2b | 3c | ||||
z twierdzenia sinusów: sinα= | , sinβ= | , sinγ= | ||||
| 2R | 2R | 2R |
| b*2c | 6abc | |||
P1= | *sinα= | |||
| 2 | 4R |
| 2a*c | 4abc | |||
P2= | *sinβ= | |||
| 2 | 4R |
| a*b | 3abc | |||
P3= | *sinγ= | |||
| 2 | 4R |
| 18abc | 13abc | 5abc | ||||
P(EGH)= | − | = | ||||
| 4R | 4R | 4R |
| 5 | ||
zatem P(EGH) = | P(ABC) | |
| 18 |

| 5 | ||
PΔEGH= | PΔABC | |
| 17 |
| 1 | 1 | |||
PΔABC= | a*b*sinC lub PΔABC= | a*c*sinB lub | ||
| 2 | 2 |
| 1 | ||
PΔABC= | c*b*sinA | |
| 2 |
| 1 | 1 | 1 | 1 | 1 | ||||||
PΔHGC= | * | a* | b*sinC= | * | absinC⇔ | |||||
| 2 | 3 | 2 | 2 | 6 |
| 1 | ||
PΔHGC= | PΔABC | |
| 6 |
| 1 | 1 | 2 | 1 | 2 | ||||||
PGEB= | * | c** | a*sinB= | * | ac*sinB⇔ | |||||
| 2 | 3 | 3 | 2 | 9 |
| 2 | ||
PGEB= | PABC | |
| 9 |
| 1 | 1 | 2 | 1 | 2 | ||||||
PHEA= | * | b* | c *sinA= | * | bcsinA⇔ | |||||
| 2 | 2 | 3 | 2 | 6 |
| 2 | ||
PHEA= | PΔABC | |
| 6 |
| 1 | 2 | 2 | 3+4+6 | |||||
PΔHGE=PΔABC−( | + | + | )PΔABC=(1− | )PΔABC= | ||||
| 6 | 9 | 6 | 18 |
| 5 | ||
PΔHGE= | PΔABC | |
| 18 |